direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Prof. Dr.-Ing. Franz Dietrich

Lupe

Office: PTZ 303
Tel.: +49 (0)30/314-22014
Fax: +49 (0)30/314-22759
Let's connect via
Researchgate
LinkedIn
Xing

Scientific career

2018 Professor and head of the department of assembly and handling technology (successor em. Prof. Günther Seliger), TU Berlin

2017 TU Berlin: Call to TU Berlin

2013 Head of the research group "Assembly and Production Automation", Institute of Machine Tools and Production Technology, TU Braunschweig, with active contribution to the research campus OpenHybrid LabFactory, Wolfsburg to the research center BatteryLabFactory Braunschweig

2013 Promotion to Dr.-Ing. with the research topic "Nonlinear Modelling of Hydraulically Actuated Production Machines Using Optimized Experiments", TU Braunschweig

2005 Diplom mechanical engineering (mechatronics & microsystems technology), Karlsruhe Institute of Technology KIT (former University Karlsruhe (TH)), with studies in England and at the University of Bremen

  • Chairman and organizer of the 7th International CIRPe Web Conference 2019
  • Research Affiliate of the International Academy of Production Engineering (CIRP)
  • Winner of the science award of the Heribert-Nasch-Foundation
  • Guest lectures at the Tongji-University, Shanghai, und Singapore Institute of Manufacturing Technology (SIMTECH), Singapur
  • Scientific advisor in the EXIST-project FormHand (now FormHand GmbH, Braunschweig)
  • Involved in over 70 scientific publications and several patents

Contact me for a full CV.

Scientific interests

  • Dynamised production with utilization of user-centred means of intervention and design thinking models
  • Handling technology, robotics, systems technology and control technology for production automation

    • Human-Robot collaboration
    • Control technology for robots, process automation and command levels
    • Modeling, control, trajectory generation
    • Robot controlled additive production
    • Machine concepts, multi-purpose gripper and end effectors
    • Micro assembly, precision assembly, high speed assembly
    • Lab automation and packaging technology (pharamaceutics and bio technology)

  • Process automation, linking and stacking technology for batteries and fuel cells
  • Automation for production process chains in lightweight construction / multi-material-components / in additive production
  • Handling technology for flexible transfer, intra-logistics and commissioning
  • Handling technology, assembly and disassembly in the context of sustainability and energy efficiency
  • New forms of engineer training, i.e. with augmented reality and maker spaces
  • Augmented reality for qualification and productivity increase in assembly and logistics
  • Automation and rationalization of non-production handling processes (i.e. flow of goods, services, construction industry)
  • Targeted use and management of heat in automated production

Publications

Investigation of particulate emissions during handling of electrodes in lithium-ion battery assembly
Citation key FroehlichLeithoffBoeselagerEtAl2018
Author Fröhlich, Arian and Leithoff, Ruben and von Boeselager, Christina and Dröder, Klaus and Dietrich, Franz
Pages 341-346
Year 2018
ISBN 10.1016/j.procir.2018.08.322
Journal Procedia CIRP
Volume Volume 78
Abstract In battery production, damage-free processing of materials and intermediate products is crucial for ensuring battery cell performance. A central step in battery production is cell assembly, in which a multitude of handling processes of electrodes is necessary. These handling processes tend to cause mechanical stress (e. g. gripping force) and particulate emissions (e. g. abrasion), which both must be minimized. Especially the identification of main impacts on particulate emissions during electrode handling is mandatory to understand the consequences on assembly process and to find avoidance strategies. This paper presents a systematic investigation of the particulate emissions, which result from different pneumatic gripping principles used in battery production. The investigation identifies the significance of handling parameters (e. g. air supply pressure) on particulate contamination on electrodes. Therefore, handling experiments are conducted with electrodes and airborne particles are counted.
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Prof. Dr.-Ing. Franz Dietrich
Fachgebietsleiter
sec. PTZ2
Pascalstr. 8-9
10587 Berlin
+49 (0)30/314-22014
+49 (0)30/314-22759